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In this paper we present a mathematical programming model for the Kanban system in a
deterministic multi-stage capacitated assembly-tree-structure production setting. We discuss
solution procedures to the problem and address three special cases of practical interest.
(JUST-IN-TIME MANUFACTURING—KANBAN; INVENTORY/PRODUCTION—DE-
TERMINISTIC MODELS; PROGRAMMING)

1. Introduction

The Kanban system is a multi-stage production scheduling and inventory control
system. It is motivated by the concept of just-in-time production and aims at reducing
the level of inventory to a minimum. Briefly speaking, the concept of just-in-time
production is that materials should flow through the entire production sequence with-
out being stopped or accumulated in an intermediate stage. Under this concept, no
inventory of any kind is viewed as an absolute necessity.

Obviously, in many instances inventories are justified because of the important role
they play. For example, cycle stock is carried due to the trade-off that has to be made
between setup cost and inventory holding cost; and safety stock is accumulated to
protect against various uncertainties. Unfortunately, the basic concepts that justify the
existence of inventories have been abused over the years. Managers very often accept
the existence of setup work without looking into the possibility of reducing it, which
could lead to a down-sized cycle stock. Similarly, instead of improving the accuracy of
forecasts of demand and lead times and ameliorating preventive maintenance proce-
dures, managers often choose to increase safety stock. In short, inventory has become
more of a cover-up of production problems than of a solution to them.

The Kanban system, originally designed by Toyota to realize just-in-time produc-
tion, is intended to keep a tight control over inventory and force the hidden problems to
surface so that they can be identified and addressed directly.

1.1. Summary of the Operating Procedures of the Kanban System

For the purpose of this paper, we present a brief description of how the Kanban
system operates. For more details, the reader is referred to Kimura and Terada 1981,
Monden 1981a, b, ¢ and Sugimori et al. 1977. “Kanban”, in the Japanese language,
refers to a card or tag. It can serve as a production, delivery, or purchase order. In the
system, items are put into containers and different types of items are held in different
containers. Once a container is full, a Kanban is attached to it. A Kanban usually
carries the following information: (1) item name, (2) item number, (3) description of
the item, (4) container type, (5) container capacity, (6) Kanban identification number,
(7) preceding stage, and (8) succeeding stage.
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428 GABRIEL R. BITRAN AND LI CHANG

In Figure 1, stage n represents an intermediate stage in a production setting. It
encompasses a production process P” and a subsequent inventory point /™. The type of
production process involved can be fabrication, subassembly, delivery, or purchase.
Using as inputs the items stored in the inventory point of the immediate predecessor,
process P" produces its own items to fill a container and then stores the full container in
I" with a Kanban attached to it. When the first piece of a full container in I” is used by
the production process of the immediate successor, the Kanban originally attached to
the container is detached and kept aside. At the end of each time period (for example, at
the end of every half-shift), all the Kanbans detached in I” during the time period are
collected and sent back to P". These Kanbans then serve as new production orders for
P". Generally P" uses a first-in-first-out rule to process these orders. Once P" produces a
full container (i.e., P" fills an order), the Kanban which ordered the full container is
attached to it and the container is sent to I”.
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FIGURE 1. Flows of Items and Kanbans.
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Below, we outline four important observations regarding the system. First, the total
number of Kanbans circulating between P” and I" is unchanged over time, unless
management interferes to drain Kanbans from, or to inject more Kanbans into, stage #.
Second, the maximum inventory buildup in 7" is limited by the number of Kanbans
circulating between P” and I". Consequently, by controlling the number of circulating
Kanbans and requiring that every full container have a Kanban attached to it, man-
agers can be assured that the inventory buildup will not exceed a certain limit. Third,
the movement of Kanbans between P” and 1" is triggered by the inventory withdrawal
from I” by the immediate successor. In other words, P” will produce to replenish what
has been withdrawn from I” by the immediate successor. Fourth, by circulating Kan-
bans within every stage, all the stages in a production setting are chained together.
Therefore, the production schedule of the final stage is transmitted back to all the
upstream stages. Since a detached Kanban automatically becomes a new order, man-
agers need not issue any other document to trigger an order in an upstream stage. The
upstream stages can actually be self-operated.

These features of the Kanban system reduce significantly the paperwork and the
overhead to run the facilities and control the inventory. They also make the Kanban
system robust in the sense that it tends to absorb and adapt to uncertainties, in demand
and production, without requiring continuous management intervention. For instance,
whenever a stage ceases to produce due to machine breakdown, it automatically stops
sending Kanbans to its predecessors, and hence prevents the buildup of unwanted
inventory. On the other hand, whenever the demand fluctuates markedly over the
planning horizon the fixed number of Kanbans, released to a stage, will cause an early
production and force the facility to carry more inventory than the one required by a
traditional capacitated lot-size model.

Therefore, when choosing a Kanban system, managers need to consider the tradeoffs
among the length of the planning horizon, the fluctuation of the demand pattern,
the degree of overhead and management intervention, and the amount of extra inven-
tory that might be implied by an easy-to-manage system. These trade-offs are of course
situation dependent and should be made considering, in addition to the issues men-
tioned above, the culture of the firm, relations to suppliers, and the competing environ-
ment. Our experience indicates that the benefits associated with systems that are easy
to manage have been often underestimated because they are frequently not easy to
quantify.

Figure 1 depicts a serial production setting. Nevertheless, the reader can easily ob-
serve that the operating procedure, as described above, will also work with an assem-
bly-type, a distribution-type, or a mixed-type production setting.

1.2. Purposes of the Paper

The Kanban system, enabling Toyota to drastically cut its inventory investment, has
attracted much attention from production professionals worldwide. Most research ef-
forts to date have focused on the comparison of the Kanban system, or Japanese
production methods in general, and Western production methods. Rice and Yoshi-
kawa (1982) contrasted Kanban with MRP (Material Requirements Planning). Schon-
berger (1982) provided nine lessons on Japanese manufacturing techniques from which
Western companies could learn in order to simplify their production problems. Most
recently, Krajewski, King, Ritzman, and Wong (1983) conducted a simulation experi-
ment to identify the critical technical factors in the Japanese and U.S. manufacturing
environments, represented by Kanban and MRP, respectively. With the exception of
Kimura and Terada (1981), efforts have not been made to develop mathematical
models for the Kanban system. In 1981, Kimura and Terada provided several basic
equations for the Kanban system in a multi-stage serial production setting to show how
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the fluctuation of final demand influences the fluctuation of production and inventory
volumes at upstream stages. In their theoretical analysis, they assumed small container
size and unlimited production capacity.

The purpose of this paper is two-fold. First, it provides a mathematical programming
formulation for the Kanban system in a deterministic multi-stage assembly production
setting. The model assists managers in determining the number of circulating Kanbans,
and hence the inventory level, at each stage. Contrasting with Kimura and Terada
(1981), we make no assumptions on the container size (except for three special cases in
which we make assumption on the relative container size between stages); in addition,
we allow limited production capacity. As a result, our model should be applicable in
more general manufacturing situations. Second, the paper investigates solution proce-
dures, for the resulting Kanban model, that will make it usable in practice. To this end,
the initial model, which is nonlinear integer in nature, is transformed into an integer
linear program. The integer linear program presents the following advantages: (1) it is
more tractable than the nonlinear model; and (2) it provides the same set of feasible
solutions and the same set of optimal solutions as the nonlinear model in terms of the
decision variables controlled by managers. To the same end, three special cases of
practical interest are constructed on the basis of the relative container size between
stages. In one case, the integer linear program is converted into a mixed integer linear
program with the number of integer variables greatly reduced. In the other two cases,
the linear programming (LP) technique is used and the relative error due to the LP
approximation is shown to approach zero asymptotically.

The readers should note that the models that we analyze do not incorporate uncer-
tainties. Therefore managers should adjust the number of Kanbans obtained from the
models to take into consideration the potential uncertainties in demand and machine
breakdowns. In addition, managers may wish to periodically resolve the models to
incorporate additional information like revised demand forecast.

2. Model Description

The model that we present deals with a multi-stage capacitated assembly-tree-struc-
ture production setting with each stage producing one type of item. There are N + 1
stages in the setting. Let n € {0, 1, .. ., N} index the stages with the understanding that
n, < n, if stage n; succeeds stage n,. We also denote an item by the index of the stage
producing it. The final stage, stage 0, includes only the final assembly operation P°,
while every upstream stage n € {1, 2, ..., N} includes a production process P” and an
immediately succeeding inventory point I”. An example of indexing is provided in
Figure 2. Lett € {0, 1, ..., T} index the time periods with the understanding that the
planning horizon starts at the beginning of period 1 and finishes at the end of period T.
For the final stage, a time-phased production schedule is given and must be met. For
each upstream stage, a production quota for the whole planning horizon is given and
the quota is determined by the effective demand imposed upon the stage. Once an
upstream P” has reached its production quota, all the detached Kanbans remaining at
P" or to be sent to P” in the future from I” stop triggering any further production and
are drained from the system by management at the end of the planning horizon.

Throughout the paper, we shall use [Z1to denote the smallest integer which is larger
than or equal to Z and | Z| the largest integer which is smaller than or equal to Z. Proofs
of propositions are omitted whenever they are not particularly difficult to reproduce.

Parameters

o" = number of units of item 7 in a full container; " € {1,2, - - - } (n=0,1,. .., N).
These parameters represent container capacities.
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FIGURE 2. An Example of Indexing.

87 = production capacity, in terms of the number of full containers of item #, at P"in
period; 8/ €{0,1, -} (n=1,...,N;t=1,..., T)

s(n) = immediately succeeding stage of stagen (n=1,..., N).

P(n) = set of immediately preceding stages of stage n(n =0, 1,..., N).

™™ = number of units of item » which are required to make one unit of item s(n);
e="Me{1,2,+++}(n=1,...,N).

7 = number of full containers of item » available in I" at the end of period O;
Vvee{0,1,2, -} (n=1,..., N). Note that each of these full containers has a
Kanban attached to it.

W?% = number of units of item # remaining in a partially filled container, whose
Kanban has been detached, in /" at the end of period 0; W§E {0,1,...,a"— 1} (n=1,
., N).
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X? = production requirement, in terms of the number of full containers of item 0
(i.e., the final product), at stage 0 in period £; XY € {0, 1,2, - - -} (¢t =1,..., T).
" = max {0, [(e™Pa*P/a")Q*™ — Vi — (W§/a™)1}
= production quota or effective demand, in terms of the number of full contain-
ers of item #, imposed upon stage » for the whole planning horizon; 0" € {0, 1,2, - - - }
(n=1,...,N). Q%is defined as T2, X?.

To lessen the burden of notation we assume that the production lead time is zero, and
that the Kanbans detached in I” in period ¢ are available to serve as production orders in
P"in period ¢ + 1. This simplification will have no impact on the results of the paper.
Note that at the beginning of the planning horizon, the initial inventory at stage » is
composed of V3§ full containers and W§ units of item n(n = 1, ..., N). Also note that
both X? and 87 are allowed to vary from period to period in order to give management
more flexibility in scheduling final assembly operations and shifting resources.

Variables

X7 = number of detached Kanbans of item # which respectively trigger the produc-
tion of a full container in P"inperiodt(n=1,...,N;t=1,...,T).

Y? = number of Kanbans of item n which are detached from their associated con-
tainersin I"inperiodt(n=1,...,N;t=1,...,T).

U? = number of detached Kanbans of item » which are available in P" at the end of
period ¢ and have not triggered any productionyet(n=1,...,N;¢t=1,...,T).

V" = number of full containers of item » which are available in /" at the end of period
tn=1,...,Nyt=1,...,T).

W? = number of units of item n remaining in a partially filled container, whose

Kanban has been detached, in I" at the end of period t (n=1,...,N;¢t=1,...,T).

# = number of detached Kanbans of item n which are injected into P" by manage-
ment at the beginning of the planning horizon (n =1, ..., N).

We shall use the following abbreviations for variables:

(1) (U, V, W, X, Y) stands for all the variables involved, which includes MT + 1)
U-type variables, NT V-type variables, NT W-type variables, NT X-type variables, and
NT Y-type variables.

(2) (U, X) stands for N U-type variables with ¢ = 0 and NT X-type variables.

(3) (Up) stands for (U}, U3, ..., Ub).

(4) (X")stands for (X7, X3, ..., XP).

We describe mathematically the Kanban system as follows:

YL -X7=U?=0, n=1,...,Nyt=1,...,T, 2.1)
Ve i+ X -Y!—Vi=0, n=1,...,Nt=1,...,T, 2.2)
g Ur, + Yo,
87,
WV, + W + ok X0 (e*a))  all k € P(n),
—1
Q- > X7, n=1,...,Nyt=1,...,T,
k =1
ofVE |+ Wk, + o X* = e*0aX?, alke P0);t=1,...,T, 2.4)

[Y{'=r(e"’s‘")a“")Xf‘”)— wife,  n=1....Nt=1L....T, (2.5)

Y§=0, n=1,...,N,
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W+ o"Y? — e WX — Wi =0, n=1,...,N;t=1,..., T, (2.6)
UZ nonnegative integer, n=1,...,N. 2.7

Constraints (2.1) and (2.2) describe the conservation of flow in P” and I”, respec-
tively, in terms of Kanbans. Constraints (2.3) indicate that the number of full con-
tainers put into production in P” in period ¢ is determined by the available detached
Kanbans, production capacity, available inventories in the previous stages, and re-
maining production quota. Constraints (2.4) ensure that the production schedule of the
final stage can be carried out. Constraints (2.5) indicate the number of Kanbans which
are detached from their associated containers in I” in period ¢. Constraints (2.6) de-
scribe the conservation of flow in I” for the number of units of item 7 remaining in a
partially filled container. The nonnegative integrality of U3 is enforced by (2.7). No
setup is involved explicitly in (2.1)~(2.7). If an upstream stage P" needs a setup in a
particular period ¢ (due, for example, to the fact that the machinery in P” is scheduled
for other purposes in the previous period, i.e., 8-y = 0), the setup is assumed to be
executed externally to the model and the value of 87 is determined after making
allowance for the setup.

THEOREM 2.1. If{U, V, W, X, Y) satisfies (2.1)~(2.7), then

(a) n oy We, X7, and Y7 are nonnegative integers, n = 1, . .. JNye=1,...,T,
b YI<Vi,+Xi,n=1,...,Nt=1,..., T,

) Wrsa"—1Ln=1,...,Nt=1,..., T,

d) Ui+ vi=Ur+vi+Y,n=1....,Njt=1,..., T,

e ZE, xr=Q"n=1,...,N.

The above theorem shows that (2.1)~(2.7) implicitly enforce the following properties:
(a) In addition to Uj (n = 1, ..., N), the rest of the variables are also nonnegative
integers. (b) The number of Kanbans detached from their associated containers in I” in
period ¢ is smaller than or equal to the number of full containers available in I” at the
end of period ¢ — 1 plus the number of full containers received by I" in period ¢. (c) The
number of units of item 7 remaining in a partially filled container in I” at the end of
period ¢ is smaller than the container size o”. (d) The number of Kanbans circulating in
each upstream stage is unchanged and equal to Ug + V3 during the planning horizon.
(e) The production quota imposed on each upstream stage is met exactly.

We propose the following optimization model, henceforth referred to as model (M),
for the Kanban system:

Minimize

N
21 C"Us+ Vi + 1 —(1/a") (2.8)

st (2.1)-(2.7),

where C” is the accumulated value of one full container of item #; in other words, C"
represents the sum of material, labor and all other manufacturing costs which have
been accumulated by the system in a full container of item n. The cost objective (2.8)
can be interpreted in two different ways. One interpretation is that it represents an
upper bound on the value tied up in inventory in the system at any point in time. It is
not difficult to construct examples where this bound is attained in some period of the
planning horizon. Clearly, the multiplication of (2.8) by the inventory holding charge
over the planning horizon results in an upper bound for the inventory holding cost over
the same period. The other interpretation of (2.8) is that it attempts to minimize a
weighted combination of the number of Kanbans in circulation. A smaller number of
Kanbans circulating at a stage reflects higher operating efficiency at that stage, and
hence it is perceived as a desirable goal by workers and management.
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3. Model Solution

Model (M) is a complex integer problem. The nonlinear constraints (2.3) and linear
constraints (2.5), when re-expressed in more operational forms, greatly increase the
number of integer variables and the number of constraints.

3.1. Transformation

In this section, we shall transform model (M) into a simpler model such that both
have the same set of feasible, and optimal, solutions in terms of {Uyp), and the same
optimal value. The transformation is motivated by the observation that if U, Vv, W, X,
Y)yand(U, V, W, X, Y) are two feasible solutions to (2.1)~(2.7) and {Up) = { Uy), then
(U, V,W,X,Y)={(U, V, W, X, Y). In other words, once Uj (n = 1, ..., N) assume
their specific values, all other variables in (2.1)-(2.7) are uniquely determined. This
observation corresponds to the characteristic of the Kanban system that it is self-opera-
tional once the Kanbans have been distributed to the stages. The key decision variables
that need to be controlled by management are the U (n =1, ..., N).

For future discussion, the following nomenclature will be adopted. A partial solution
is said to satisfy, or to be feasible in, a set of constraints if there exists a complement to it
such that the whole solution, i.e., the partial one together with its complement, satisfies
all the constraints. For example, the partial solution (X, Y') satisfies, or is feasible in,
(2.1)~(2.7) if there exists (U, ¥, W) such that the whole solution (U, V, W, X, Y)
satisfies (2.1)~(2.7). Similarly, a partial solution is said to be feasible (optimal) in an
optimization model if there exists a complement to it such that the whole solution is
feasible (optimal) in the model. Two optimization models are said to have the same
feasible (optimal) partial solution if there exist two complements, which may or may
not be different from each other, such that the two resulting whole solutions are feasible
(optimal) in the two models, respectively.

Let E™® = emWos®iqn for n = 1, ..., N. The parameter E™® represents the
number of full containers of item » required to make one full container of item s(n).
Depending upon the values of €™, *”, and o”, the value of E”** may or may not be
integral. Also let 0 < ¢ < min {1/a”"ln = 1, ..., N} < 1. Consider the following
optimization model:

minimize (2.8)

s.t.

! t
(Wola)+ VE+ > Xt — E™M S X5 » 0, n=1,...,NMNt=1,...,7T, (3.1

=1 =1
t—1

t
Us— > XP+ E™" 3 XS0 — (Wija™y+ 1 —e= 0, n=1,...,Nt=1,...,T,
=1 r=1

(3.2)
X;€{0,1,...,8%, n=1,...,Nit=1,...,T, (3.3)
Us€{0,1,2,---}, n=1,...,N. (3.4)

We refer to the above model as model (MO0). The relation between model (M) and
model (MO) is summarized in the next theorem.

THEOREM 3.1. (M) is feasible if and only if (MO0) is feasible. The two models have the
same set of feasible partial solutions {(Up), the same set of optimal partial solutions
(Uy), and the same optimal value.

(MO) is an integer linear program which has 2NT constraints, excluding (3.3)—(3.4),
and NT + N integral variables. The configuration of (MO0) is computationally more
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favorable than that of the nonlinear integer problem (M). However, it should be
pointed out that the constraints of (MO0) do not describe the operating procedure of the
Kanban system while those of (M) do. The link between (M) and (MO) hinges on Uj
(n=1,...,N),asshownin Theorem 3.1. Since U (n=1, ..., N)are the only decision
variables controlled by management, we can solve (MO) and still obtain a relevant
feasible or optimal partial solution {Up) to (M).

The proof of Theorem 3.1 follows directly from Lemmas A.1 and A.2 in Appendix 1.
Note that the constraints of model (M0), i.e., (3.1)~(3.4) do not specifically involve the
production quota Q". It can be easily shown that ST, X"=Q"forn=1,...,Nif(X)
satisfies (3.1) and (3.3). For any (U, X » satisfying (3.1)-(3.4), the proof of Lemma A.1
provides a way for constructing (X) such that ST, Xt<Q"forn=1,..., Nand
{Uy, X) still satisfies (3.1)-(3.4). Obviously, the newly constructed {X) does satisfy the
constraints X, X" =Q"forn=1,..., N.

3.2. Feasibility Test

Before solving model (MO), it is important to know whether it is feasible or not. Let
Q = {(X)I(X) satisfies (3.1) and (3.3)}. It is obvious that @ # & if and only if (MO) is
feasible. Gabbay (1979) devised a method to test if a multi-stage serial production
setting is feasible. A similar feasibility test can be applied to Q, which represents a
multi-stage assembly production setting. The algorithm of the feasibility test is given
below. The procedure attempts to compute a feasible solution to € such that each stage
satisfies the effective demand of the succeeding stage by producing as late as possible.

(Step 0)

XP<«Xx? for t=1,...,T,

n<1.
(Step 1)
Q% < max {0, [E=®X5® — Vi — (W§/aM},

t—1

t
Q7 < max {0,[E™® > Xs» — Vi — (Wgja M} — X Q7 for  1=2,....T,
=1 =1

t< T.
(Step 2) X7 < min {Q}, B7}; if t = 1, then go to Step 3; else,
Qr, < Q- + max {0, Q7 — B},

t<t-—1,

return to the beginning of Step 2.

(Step 3) If 87 < QfF, then @ = & and exit; else, if n = N, then @ # & and exit; else,
n < n + 1 and return to Step 1.

Through Steps 1 and 2, the algorithm computes

! 14
(X € Qny X0 = {{X"W(We/e)y + VE+ 2 X7 = E™® 3 X5 > 0,
7=1 =1
xref0,1,....8} for t=1,...,T}

such that 3., X" < aXie=1,..., T) for every (X" € Un; X" If 7 < Q7 in
Step 3, then such (X") does not exist and consequently Q(n; X*™) = Q@ = . This
feasibility test is necessary and sufficient in the sense that it generates a vector (X ) if
and only if (MO) is feasible.

4. Model Specialization

In the previous discussion, we developed a general approach to the Kanban system.
In practice, managers may find certain choices of container size desirable. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



436 GABRIEL R. BITRAN AND LI CHANG

section, we shall investigate the solution procedures to the Kanban model for three
particular choices of container size.

4.1. A Container-for-Container Mode

By container-for-container mode we mean that exactly one full container of item 7 is
required to make one full container of the subsequent item s(n) foralln € {1,..., N}.
In other words, under this mode container sizes must be adjusted properly so that
o™ = o" or E™® = | foralln € {1, ..., N}. Note that "™ is given by the
product specification. The parameters to adjust are o” for n = 1, ..., N. The one-for-
one scheme, whenever possible, is a convenient one and it is supported by the philoso-
phy of just-in-time production. It does not need handling multiple containers from one
stage to the next as would be the situation for the case where E™™ is greater than one;
neither does it tend to accumulate the inventory of work-in-process as would be the
situation for the case where E™*® is smaller than one.

Consider the following optimization model:

minimize (2.8)

S.t.
t t
Vi+ > X -3 X >0, n=1,...,Nyt=1,...,T, 4.1)
=1 =1
t -1
Ui— > X7+ X XsW >0, n=1,...,N;t=1,...,T, 4.2)
=1 =1
O0sX/<B!, n=1,...,Nt=1,...,T, (4.3)
Use{0,1,2,--+}, n=1,...,N. (4.4)

We refer to the above model as (M1). We summarize in the next theorem the relation
between models (M0O) and (M1).

THEOREM 4.1. Assumethat E™™ = 1foralln€ {1, ..., N}. (MO) is feasible if and
only if (M) is feasible. The two models have the same set of feasible partial solutions
(Uy), the same set of optimal partial solutions {Uy,), and the same optimal value.

(The proof of Theorem 4.1 is provided in Appendix 2.)

(M1) is a mixed integer linear program which has 2N7T constraints, excluding (4.3)-
(4.4), and NT + N variables, of which N are required to be integral. Recall that N7 + N
variables are required to be integral in (MO0). Therefore, we can expect that it is easier to
solve (M1) than to solve (M0); and Theorem 4.1 ensures that we can still obtain a
relevant optimal partial solution (U;) for (M0), and hence for (M), by solving (M1).
Note that for any solution (Up, X ) to model (M1), the proof of Theorem 4.1 provides a
way for constructing (X') such that {Up, X) is a feasible solution to model (MO0) under
the container-for-container mode.

4.2. A One-Container-for-Multiple-Containers Mode

By one-container-for-multiple-container mode, we mean that one full container of
item 7 is required to make an integral number of full containers of the subsequent item
s(n) for all n € {1, ..., N}. Under this mode, the container sizes must be adjusted
properly so that the inverse of E™* is an integer foralln € {1, ..., N}.

We impose the following conditions: (a) the inverse of E™™ is an integer for all
n€{l,...,N};and (b) Wiis an integral multiple of e™®a*™, or equivalently (Wg/a™)
is an integral multiple of E™*®, foralln€ {1, . . ., N}. Condition (a) is the definition of
one-container-for-multiple-containers mode. Condition (b) deals with the partially
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filled containers which exist at the beginning of the planning horizon. As shown in the
next theorem, condition (b) can always be enforced under condition (a).

_THEOREM 4.2. Assume that condition (a) holds. Let W3 € {0, 1, ...,a" — 1} and

Wi = e™®a x| Wi/(e™Mat™) forn = 1,.. ., N. Then, (U, X) satisfies (3.1)~(3.4)
with (Wo) = { Woy if and only if {Us, X ) satisfies (3.1)—(3.4) with (W) = (Wo).

(The proof of Theorem 4.2 is provided in Appendix 3.)

According to Theorem 4.2, we can always replace W5 by ™M™ | Wi o ™))
in model (M0) without altering the feasible region of the model under the one-con-
tainer-for-multiple-containers mode. As a result, condition (b) does not really impose
any additional restriction.

Consider the following optimization model:

minimize (2.8)
s.t. (3.1), (3.2)

0<XF=<@?, n=1,...,Nt=1,..., T, (3.3
Ug=0, n=1,...,N. 3.4y

We refer to the above model as model (M2). The model is a linear programming
relaxation of (M0). We summarize their relation in the next theorem.

THEOREM 4.3. Assume that conditions (a) and (b) hold. (MO0) is feasible if and only if
(M) is feasible. If {U,, X ) is feasible for (MO), it is also feasible for (M2). If {Uo, X Y is
feasible for (M2), then U+ 1,...,[U ¥+ 1) is a feasible partial solution to (MO).

(The proof of Theorem 4.3 is provided in Appendix 4.)

It is easier to solve (M2), a linear program, than to solve (MO0), an integer linear
program. Theorem 4.3 provides a way to approximate the optimal partial solution (Up)
of (MO) by solving (M2). We are therefore interested in knowing the performance of the
approximation. Let Z; be the optimal objective value of (MO) and Z, the objective
value given by (TUS1+ 1, ..., TUS1+ 1) where (Uo) is an optimal partial solution to
(M2). The next theorem shows that the relative error (Z, — Zo)/Zo caused by the LP
approximation approaches zero asymptotically.

THEOREM 4.4. Assume that conditions (a) and (b) hold. Also assume that (M0) and
(M?2) are feasible. Then (Z, — Zo)/Zo —> 0 as Q% T —> .

(The proof of Theorem 4.4 is provided in Appendix 5.)

In the above theorem, Q°/ T represents the average production requirement (in terms
of the number of containers) per period at the final stage. When Q% T becomes very
large, the relative error due to the approximation of (M0) by (M2) becomes negligible.

EXAMPLE . LetN=1,T=2,C'=1,a'=5,e¥=1,a"= 1,E®=02,8=0,8}
=,e=0.1,Vi=0 Wh=4,X} =4, and X2 = 26. At optimality, U} = 6 for (MO)
while U} = 4.3 for (M2). Since[4.31+ 1 = 6, the approximation method actually finds
the optimal U} for (MO) in this example. U

EXAMPLE2. LetN=1,T=2,C'=1,a' =4, =1,a"=1, E'® =0.25,8 =8}
= o0, €=0.1, V) =0, W} =0,and X} = X3 = 8. At optimality, U} = 2 for (MO) while
Ul = 1.1 for (M2). Since .11+ 1 =3 > 2, the approximation method finds a non-
optimal feasible Uj for (MO) in this case. With Q% T = 8, the relative error
(Z2— Zo)] Zo = 4/11.

Now let X9 = X9 = 800 while the other parameters remain unchanged. At optimality,
UL = 200 for (MO) while U} = 199.1 for (M2). With QYT = 800, the relative error
(Z, — Zo)/Zo = 4/803. O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



438 GABRIEL R. BITRAN AND LI CHANG

4.3. A Multiple-Containers-for-One-Container Mode

In this section we analyze the case of multiple-containers-for-one-container. That is,
the case where an integral number of full containers of item » are required to produce
one full container of subsequent item s(n) for n € {1, ..., N}. Under this mode the
container sizes must be adjusted properly so that E™*®isan integer forn€ {1,...,N}.
This mode is in line with the philosophy of just-in-time production because it discour-
ages the use of large-sized containers in the upstream stages and tends not to create
partially filled containers. For future discussion, let M° = 1 and M” = E™™M*®™ for
n=1,..., N. The parameter M" represents the number of full containers of item »
which are required to make one full container of final product in stage 0. We will also
let [x], denote the smallest integer which is greater than or equal to x and is an integral
multiple of .

In this section, we assume the following conditions: (1) E™® is a nonnegative integer
forn€ {l1,..., N};(2) V§is an integral multiple of M" forn € {1, ..., N} and (3) 8}
(¢t=1,...,T)are integral multiples of M" foralln € {1, ..., N}.

Consider the following optimization model:

minimize (2.8)
s.t.

t t
Ve+ 2 Xt —E=™ Y X5 =, n=1,...,Nyt=1,...,T, 4.5)

r=1 =1
t t—1
Ui— X X"+ E™® 3 X5 > 0, n=1....Nyte=1,...,T, (4.6)
r=1 =1
0<X]=p7, n=1,...,Nyt=1,...,T, 4.7)
Ui =0, n=1,...,N. (4.8)

We refer to the above problem as (M3). The model is a linear programming model and
its relation to (MO) is summarized in the next theorem.

THEOREM 4.5. Assume that conditions (1), (2) and (3) hold. (MO) is feasible if and
only if (M3) is feasible. If (U,, X ) is feasible in (MO), it is also feasible in (M3). If {U,,
X) is feasible in (M3), then Uy, . . . ,[UY W) is a feasible partial solution to (MO0).

To evaluate how well an optimal partial solution {(Up) to (M3) can approximate
(MO), we let Z, be the optimal objective value of (M0) and Z, the objective value given
by (U, . . ., [UYTyw). The next theorem shows that the relative error (Z; — Zo)/Z,
caused by the LP approximation approaches zero asymptotically.

THEOREM 4.6. Assume that conditions (1), (2) and (3) hold. Also assume that (M0)
and (M3) are feasible. Then (Z; — Zy)/Zo = 0 as Q°%/T - .

EXAMPLE3. LetN=3,T=3,5(3)=2,52)=1,5(1)=0,C3=1,C*=6,C' = 15,
o"=1forn€{1,2,3},e**=5,e>'=2,€"0= 1,81 =0 forn€{1,2,3} andtE {1, 2,
3L, Ve=0forn€ {1,2,3}, Wg=0forn€ {1,2,3}, X =0, X3 =0and X3 = 2. At
optimality, U3 = 10, U3 = 2 and U} = 2 for (MO0) while U3 = 20/3, U3 = 4/3 and U} =2
for (M3). Since {20/310 = 10, [4/3), = 2 and 2], = 2, the approximation method
actually finds the optimal (U,) for (MO) in this example. O

EXAMPLE 4. Assume the same parameters as used in Example 3, except that 83 = 0.
At optimality, U3 = 10, U} = 2 and U} = 2 for (M0) while U3 = 40/3, U3 = 4/3 and
Ug = 2 for (M3). Since [40/37,o = 20 > 10, the approximation method finds a nonopti-
mal feasible {Up) for (MO0) in this case. With Q% T = 2/3, the relative error (Z; — Z,)/
Zo = 10/52
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Now let X3 = 200 while the other parameters remain unchanged. At optimality,
U3 = 1330, U} = 134 and Uj = 200 for (MO) while U3 = 4000/3, U = 400/3 and
U} = 200 for (M3). With Q°/ T = 200/3, the relative error (Z3 — Zo)/Zo = 10/5134. O

5. Conclusion

In this paper we have presented an optimization model for the Kanban system. The
model is intended for a deterministic multi-stage capacitated assembly-type production
setting. We have also provided a general solution procedure to the model and discussed
three special cases of practical interest. Future research topics would include the devel-
opment of Kanban models for the distribution-type and mixed-type production set-
tings, the inclusion of independent (external) demands for upstream items, and a direct
treatment of uncertainties in the model.'

! The authors are grateful to Professors Hirofumi Matuso and Devanath Tirupati, and two anonymous
referees for their useful comments on an earlier version of this paper.

Appendix 1. Lemmas A.1 and A.2

Let (2.3) and (2.7) be respectively, forn =1,..., N and ¢ =1, ..., T, the set of constraints derived by
expressing (2.3) as inequalities and by extending the integrality condition to X7.

LEMMA A.L. If(U, V, W, X, Y) satisfies (2.1)-(2.2), (2.3), (2.4)~(2.6), and (2.7), then (U, X satisfies
(3.1)-(3.4). If (Uy, X) satisfies (3.1)~(3.4), then (Uo) is a feasible partial solution to 2.1)-(2.2), (2.3),
(2.4)(2.6), and (2.7).

[PROOF] Let <U, V, W, X, Y) satisfy (2. 1)-(2.2), (2.3), (2.4)-(2.6), and (2.7). It follows from (2.2), (2.3),
(2.4), and (2.6) that
eI < oMY+ WLy + &' X

t—1 t—1

t-1 -1
—d(VE+ S X =3 YD+ (W + " S YT — e T X) + o X
r=1 r=1 =1 r=1

Hence,

t t
(Wifa™y + VE+ 3 X7 — E™® 3 X302 0.
=1

=1

So, {Up, X Y satisfies (3.1). It follows from (2.5) and (2.6) that Z{., Y7 = [(e™™at™ 2L, X5 — W)/a"T; and
it follows from (2.1) and (2.3) that U§ — Zi-; X7 + $24 Y? = 0. Hence,

t =1 t -1
U= S X"+ E™® T X5 — (WilaM +1—ez U — Z X7+ [(e™Par™ 3 X530 — W)™

=1 =1 =1 =1

So, (U, Xy satisfies (3.2). The first half of the lemma is then proved.
Let (Uy, X) satisfy (3.1)-(3.4). Define (X') as follows:

t —1
X7 =min {X}, 0"} and  X"=min{3X X7, Q" —min {Z X7, 0"} for t=2,...,T.
=1 =1
It follows from the definition of (X) that Z{-; X7 = min (Z, Xr, Q" fort=1,...,Tand in particular,
>T., X" < Q". We now show that (U, X)) also satisfies (3.1)-(3.4). It follows from the definition of Q" that
(Wila™) + Vi + Q" — E™™Q% > 0. Since (U, X) satisfies (3.1),

t {
(Wefal) + V3 + 3 X7 = E™™ T X3
=1

=1
t 1
= (Wyjary+ Vi +min {3 X7, Q") — E¥®smin {T X3, Q*"} 20
r=1 =1

and hence (Up, X satisfies (3.1). It also follows from the definition of Q" and e that —Q" + E™®Q*®™
— (WEja"™ + 1 — > 0. Since (Up, X) satisfies (3.2) and (3.4),
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t -1
Ub— 3 X2+ E™® 3 X350 — (Wifar) + 1 — ¢
=1

=1
t _ t—1 _
=Uf—min {J X7, Q"} + E™®smin {Z X5, Q’("’} — (Wil +1—-€=20
=1 =1

and hence (Us, X) satisfies (3.2). By construction, (X satisfies (3.3). We have hence proved that (U, X>
satisfies (3.1)-(3.4). We next show that (U, X ) is a feasible partial solution to (2.1)~(2.2), (2.3), (2.4)~(2.6),
and (2.7). To construct a complement to (Up, X ), welet U7, V7, Y7, and Wi (n=1,...,N;t=1,...,T)be
defined according to (2.1)—(2.2) and (2.5)~(2.6). If U, + Y7, < X7, then U, — X7+ Y7, < —1 since all the
variables involved are integers. As a result

t -1 t -1
Ug— Z XI+E™OZ X5 — (WifaN + 1 —e<s Uf— 3 XP+TE™® 3 X35 — (Wia) N+ 1 — e
=1 =1

=1 - =1
=UL - X1+ Y+l —e<—14+1—€e=—€<0.

A contradiction arises and hence Uf_, + Y7, = X7. By straightforward substitution, we can show that U, v,
W, X, Y') satisfies (2.3 and (2.4). The second half of the lemma is then proved. O

LEMMA A2, If <U, Vv, W, X, Y) satisfies (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7), then (Uo) isa
feasible partial solution to (2.1)-(2.7).

Appendix 2. Proof of Theorem 4.1

[PROOF] Let (Us, X) satisfy (3.1)-(3.4). Since all the variables involved are integral, 0 < (Wg/a™) < 1,0
<~(Wp/a") + 1 — e < 1 and E™®™ = |, we conclude that (Uy, X) also satisfies (4.1)-(4.4).

Let (Up, X) satisfy (4.1)~(4.4). We want to show (Up) is a feasible partial solution to (3.1)~(3.4). To
construct a complement to (Up), we let X7 =.X71and X7 =[Z!_, X" -3} X"fort=2,. .., T. It follows
that X!, X7 =[3!_, X"1and X" is a nonnegative integer. If V5 + S!., X" — 3!, X3® <0, then Vi + 3., X"
— 2L X5 < —1 since all the variables involved are integral. Then,

t t t

t t { t t
Vi+Z X -ZXO<(+ T X1 - T XM H(Z XD - T M) <—1+(3 BM- 3 X" <0,
=1 =1

=1 =1 =1 =1 =1 =1

which contradicts (4.1) for (U, X). Hence, we conclude that V3 + 3'_, X* — 2!, X3™ > 0 and {(Up, X)

satisfies (4.1). Similarly, we can show that {Up, X satisfies (4.2). It follows from the construction of (X that
t -1 -1 -1

X=X X -2 XMN=(X/-(C3 X" - > XN <[XN<pr;

=1

7=1 r=1 =1

hence, (U,, X) satisfies (4.3). Noting that all the variables in (Us, X) are integral, 0 < (W3/a") < 1,
0<—(Wg/a") + 1 — e < 1 and E™* = 1, we conclude that (Uy, X) also satisfies (3.1)~(3.4). O

Appendix 3. Proof of Theorem 4.2

[PROOF] Note that 0 < W ~ Wi < e™a’™ — | or equivalently, 0 < (Wija™y — (Wija”)
< E™™ — (1/a™). Also note that 0 < € < (1/a") < E™s,
Let (Up, X)) satisfy (3.1)=(3.4) with (W) = (W;). It follows from (3.1) that

_ t t _ t t
(Wfa") + VE+ 3 X2 — E™™ 3 X350 = (W/a") + Vi + 3 X" — En0 3 xs0)
=1 =1 =1 =1
— (Wile) — (Wija) = —(Wila™) — (WE/a™) = —(E™® — (1/a).

Since (W3/a"), Ve, X7(forr=1,...,0and E»™X" (forr = 1,. . ., f) are all integral multiples of E™, we
conclude that (W§/a") + V§+ i X7 — E™W 3!, X3 > (, It is straightforward to show that

t =1 =
Ug— 3 X1+ E™® T X0 — (Wifa™ + 1 — = 0.
=1 =1
Let (Us, X) satisfy (3.1)-(3.4) with (W) = (ﬁ/(,). It follows from (3.2) that U} — 2!, X"
+_E"”(") XM — (WEfa™) + 1 = E™™ since UL, X" (forr=1,...,0, E~®X:® (forr=1,...,t-1),
(Wp/a") and 1 are all integral multiples of E™ while 0 < ¢ < (1/a") < E™®, Consequently,

i -1 3 -1 _
Ug— Z X2+ E™® 3 X350 — (Wgja) + 1 —e= U~ 3 X7+ E™® 3 X0 — (Wajo") + 1 — ¢
=1 =1

=1 =1

+ (Wafa™y — (WEjar) = E™®™ — e — E™® 4 (1/a) > 0.
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It is straightforward to show that

t t
Wijay+ Vi+ S X1 —E=? 3T x5 =0. O
7=1

=1

Appendix 4. Proof of Theorem 4.3

[PROOF] We shall prove only the third part of the theorem. Let {0y, X) satisfy (3.1~(3.2), (3.3 and (3.4)".
Define Uz = U814 1, X7 =[X?1and X7 =2/ X" -T2 XPfort = 2, ..., T. We want to show that
(Us, X satisfies (3.1)~(3.4). If (Wi/a") + V + Z'y X7 — E® Zi_, X5 < 0, then

¢ t
(Wiler) + Vi+ T X7 — EM0 3 X350 < —E™O
=1 =1
Hence,
t t 1 t
(Wilay + Vi + 3 X2 — Em® 3 X0 < —E=® + E»O (3 X - 2 X7™) <0,

T=| =1 r=1 =1
which contradicts (3.1) for (Jp, X). Thus, we conclude that (U, X) satisfies (3.1). Since (U, X) satisfies
(3.2), it follows that

! -1 t t
Ui— 3 X"+ EMO 3 X350 — (WEah+1—e21 —(Z XM —- 2 X)>0

=1 =} r=1 =1

and we conclude that (Up, X) satisfies (3.2). O

Appendix 5. Proof of Theorem 4.4

[PROOF] Let (Up, X) and (Up, Xo) be the optimal solutions to (MO) and (M2), respectively. Since
SN CrOR< TN, CrUS< SN, U+ 1) < 2., C"(U§ + 2), we conclude that Z, — Zy <2 N, C" Since
(Uy, X) satisfies (3.1) and (3.2),

-t -1 i -1
(WEla™) + VE+ > XP— E»M Y XM >0 and Uj— X X7+ E™® 3 x50 — (Wgla™)+ 1 — €= 0.
=1 r=1 =1 r=1
By adding the previous two inequalities together, we have U+ Vi — X7+ 1 —e=0. Since U}, V§ and X7 are
all integral and 0 < 1 — e < 1, we have Ug + V§ = X7. Since U§ + V3 = X7 holds foralit=1,.. ., T, we have
U + Vi = (L, X?)/T = Q"/T. 1t follows that Z, = 25, C"Q"/T and (Z, — Zo)/Zo <
2 3N CY(ZY., C"Q™T). By the definition of Q", Q"/T = o as Q%T = co. Hence, (Z; — Zo)/Zo —>
0as Q%T - . O
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